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The shock wave process represents an abrupt  change i n  fluid properties, in which finite 

variat ions in pressure, temperature, and density occur over the shock thickness which is 

comparable  to the mean free path of the gas molecules involved. This shock wave fluid 

phenomenon  is simulated by using the finite difference lattice Boltzmann method (FDLBM) .  In 

this paper, a new model is proposed using the lattice BGK compressible fluid model in FDLBM 

for the purpose of speeding up the calculat ion as well as stabil izing the numerical  scheme. The 

numerical  results of  the proposed model show good agreement with the theoretical predictions. 
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Nomenclature 
as " Speed of  sound 

C ; Particle velocity 

e : Internal  energy 

f ; Particle dis t r ibut ion function 

fl01 : Equi l ib r ium distr ibut ion function 

i : Direct ion of particle velocity 

Ms : Shock wave Mach number  

P : Pressure 

Re ; R.eynolds number  

t : Time 

u '. Fluid  velocity 
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Greek symbols 
g : Cartesian coordinates 

7 : Coefficient of specific heats 

k ~ ~ Thermal  conductivi ty 

: Second viscosity 

v ; Kinematic  viscosity 

p : Density 

o" : Number  of speeds of the panicles 

r : Time increment 

: Relaxation time 

1. Introduction 

In recent years, the lattice gas au tomata  (LGA)  

(MaNamara  et al., 1988 ; Qian et al., 1995 ; R.o- 

thman et al., 1997) or the lattice Boltzmann 

method (LBM) (Alexander  et al., 1993 ; Chen et 

al., 1994; Huang  et al., 1997) has received con- 

siderable attention as an alternative numerical  
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scheme for simulating complex transport pheno- 

mena. The finite difference lattice Boltzmann 

method (FDLBM) lCao et al.. 1997) is one of 

the computational fluid mechanics models which 

has been developed from LBM. In LBM, fluid is 

treated as discrete groups of many particles re- 

peating collision and translation (movement), 

and the macroscopic fluid motion is expressed by 

calculating these two modes of particle motions. 

In developing the LBM and FDLBM, many 

investigators have examined the fluid flows such 

as thermal creep flow, density-stratified flows and 

unsteady shock wave. The thermo-hydrodynamic 

model has been also developed and verified (Tsu- 

tahara et al., 2002). 

The LBM has, however, many shortcomings 

such as numerical instability in heat flow pro- 

blems or high Reynolds number flows. Besides 

it is generally known that this method requires 

enormous calculation time when it is applied to 

the flows of high Reynolds number and boundary 

fitted coordinate system is examined. 

In this paper, a new model is proposed using 

the lattice BGK compressible fluid model in 

FDLBM for the purpose of  speeding up the cal- 

culation as well as stabilizing the numerical 

scheme. 

2. Foundations of  F D L B M  

In the lattice BGK model in FDLBM which has 

been used until now, the collision term in the 

fundamental equation has been expressed as 

o3/'o3/' k - c , ' ~ f , = - -  ~_(f ,_/[o))  (1) 

Equation (1) has the Taylor expansion of  lattice 

Bollzmann equation, and has a form equal to the 

approximate Boltzmann equation which adopts 

the first term. 

The dynamics of the fluid can be described by 

the distribution function obeying the lattice BGK 

equation (1) and the macroscopic variables are 

given by the equilibrium distribution function. 

Here, the fundamental physical variables are the 
density O, the momentum Ou, and the internal 
energy e. These variables are defined as 

O) # u. =)2/,,co~ = ~.J~, e,~ (3) 
0",1~ O',t 

1 2 P e = ~ 2 - f ~ r , c ,  ~, l-~p" ' 
(4) 

- y o u  

Then. to determine the distribution function of 

Eq. ( I ) ,  we start with the Maxwellian equilibri- 

um function for the kinetic theory 

f~q = 0 exp " �9 
(2a'R T) ~;2 ' 2 R T  /,5, " 

(a=x,  y, z) 

where R is the gas constant, T is the absolute 

temperature, un and c~ are the fluid velocity and 

the molecular velocity, respectively, and subscript 

a represents the Cartesian coordinates. 

When the Much number of  the flow is small, 

Eq. (5) is Taylor  expanded about Uo=0 up to the 

third order, then we obtain 

f ~ =  A e ~ ' p [ 1 -  2Bc~u, + 21T c, c,u,u~• Bu  2 
] (6) 2 4 " 2Ba c, u,U - T ~  c,c,c,u,u,u, j 

where 

1 
A =  (2~rRT)Sr~ , and (7) 

B=.  1 , 
2 R T  

but hereafter the particle velocities are discretized 

and these constants are determined from the 

constraints so that the distribution function in Eq. 

(1) derives the Navier-Stokes equations. 

f,'* = A . eS~  o [1-2Bc~J.u, + 21~ c~co~u,u~ + Bu 2 
, 4 

_ 2t~c~.,u~u~_TBac~c~jc~uoUpUrl (9) 

The coefficient A ~ e ~ = F a ,  varies particle to 

particle, then Eq. (9) can be written as 

f~~ Fao[1- 2Bc~,u, + 2B'c~c,wu, un + Bu" 
( 1 O) 

- 2Bac~,,uou - TBac~c~,c,~u, u~u,j 

The moving particles are allowed to move with 

five kinds of speed, c, 2c, 3c, ~,'2-c and 2 ,I2-c,  
and the particles are 21 kinds, as shown in Fig. 1. 
Here, the velocity of particles is determined by 
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_ / ,  1 " I '  i / , r  ) E,,m-- ; \ 

sin (r '  ( i -  I--) 4 2  t(m-1)4 -/itq (11) 

~i=I, ..., 4, m--l, 2, k=l. 2, ...) 

where a shows m and k in Eq. (I1). The index 
m = l  indicates the panicle which moves in the 
orthogonal direction and m = 2  indicates the par- 
ticle which moves in the diagonal direction. The 
k represents the speed of particle which moves in 
the nearest neighboring lattice. The function F0, 
Fn, F=, F~s, Fz~ and F,,, respectively, are deter- 
mined by 

5 / 17 35 + 4 9 \  
Fo=l+-4--E~-~-~c,+-~- F ~-~-) ~12~ 

Fu = t / 13 + 71 3 \ 
- 8 B c ~ - - q  [ -i6-B~-~-c ~ "24-B-~- + ) (13) 

F,== 1 6 B ?  \ ~  ~ 5 - /  (14) 

1 1 I I 

Eta= 24Bc  ~ ( - + ~-ff~-+33-) 15) 

F,,=, +) 
4Bic- ~ + 16) 

1 
F ~ =  153BSc . (2Bc~+3) 17) 

and B = 1 2e 18) 

By using Chapman-Enskog expansion for Eq. 
(1), and taking the moment of ct, the Naviet- 
Stokes equations are obtained as 

a p_+ 3 ,~ , 

0t -ff~.-,.au.; ----0 (19) 

' a r ~ #  
(20) 

)*-a,7. (~ P+T~ )"" 
(21) 

-._ a~-faN, .o~ 
' 3 n . \  Or~ J 

The pressure, the kinematic viscosity, the second 
viscosity and the conductivity of the internal 
energy are given, respectively, by 

2 
P=-D-Pe (22) 

2 

4 I 

k ,  - 2 ( D + 2 )  

where r is the time increment, D is the charac- 
teristic dimension and the value of D is 2 for 
two-dimensional cases. 

In Eq. (1) and Eq. (23), the relation between 
the coefficient of kinematic viscosity v deduced 
and the single relaxation coefficient ~b hecomes 

~b~v when compared to the Navier-Stokes equa- 
tion. 

Here, if the time development is expressed by 
the Euler method, the finite difference form of Eq. 
(I) is written as 

/ P §  alP_t_ I , # . _ r  (26) c ~ - a ~ - 6 , J ,  , ,  j 

In Eq. (26), the coefficient which depends on the 
collision term is ,~t/~b. when we consider the 
collision term of the righthand side of the equa- 
tion. 

The condition of ,5,t/~b<2.0 is established on 
the coefficient in FDLBM as well as the stability 
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condition of the collision term in LBM is l / i f <  

2.0. In FDLBM, ~ is very small value in high 

Reynolds number flows from the relation between 

the coefficient of kinematic viscosity and the sin- 

gle relaxation coefficient, # ~ v .  Also, from the 

stability condition of the collision term, /x t must 

be taken small value to satisfy the condition of the 

collision term. Therefore, the enormous calcula- 

tion time is required to ensure good numerical 

solutions. 

3. Formulat ion of  a N e w  Model  

Here, we propose a new model in order to solve 

the problem as stated above. To begin with, we 

consider FDLBM as one of the schemes for 

deducing the Navier-Stokes equation. We also 

consider that the relation between the coefficient 

of the kinematic viscosity v and the single relaxa- 

tion coefficient ~ is derived by disregarding the 

physical meaning of the fundamental equation, 

hut adding some appropriate terms to the funda- 

mental equation. 

In deducing the Navier-Stokes equation, the 

Taylor expansion, as one of the concrete methods, 

is employed in the derivation process of the vis- 

cosity term in LBM. Then we deduce the viscosity 

terms by adopting the secondary term. From this 

fact, it is well known that the difference between 

LBM and the fundamental equation, in which the 

viscosity coefficient is derived from the conven- 

tional FDLBM, is the existence of the term of the 

secondary order, which should be introduced into 

the equation of the conventional FDLBM. 

Here, the term of the secondary derivative in 

the differential equation corresponds to the diffu- 

sion. Also, in the point of the viscosity, it is 

regarded that the term of the secondary order 

is effective for the operation of the viscosity 

coefficient. Therefore, we can propose that the 

relation between the viscosity coefficient and the 

single relaxation coefficient can be altered by 

adding the term of the secondary order. Then, we 

are able to carry out the speed up, which is 

difficult in the conventional FDLBM model. 

As a way of adding secondary order, the nu- 

merical calculation should be carried out by 

Copyright (C) 2003 NuriMedia 
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ther words, we transform the fundamental Eq. (I) 

as follows : 

8f, +~ a/, ac~_a A-I t ,  ~ 

r (27) 
1 

--- - ~  ( A - I :  ~ 

3 f P '  Here, the added term is similar to --ac~-o~- ~-, 

which can be obtained when the governing equa- 

tion of the flow is deduced by the Chapman-  

Enskog development, and a represents an any 

coefficient. 

Substituting Eqs. (2), ~3) and (4) into Eq. 

(27), and taking terms up to the first order e, we 

can obtain 

.,~ ,."(0) t 
o/_!2 + . . . .  ,.',v . . . . .  ,_f(~ (283 

Oh c.~ Ore qb ' 

Here, the added term is transformed with 

0 z :io) , 82 r(o) (29) 
a r c ~ c # ~ r - j : ,  -r a rc,- ~ h ~ / j  : , 

When the Taylor expansion of LBM is done up to 

the second order, the equation is written as 

~f,., aJ~. - r ~/,,,l N .  ~-~c"a~:'rc'"'-~7;&"-" "a t? , f f*?  r at' 
(30) 

This expression is equal to the equation after 

the term of the second derivative in time is remo- 

ved and when it compared with the equation of 

LBM with the parameters being set as r =  1.0 and 

a=0.5 .  By conducting such conversion, it is pos- 

sible to modify the relationship between the 

coefficient of the kinematic viscosity and the sin- 

gle relaxation coefficient (~b~l/) to q3- -a~v  in 

FDLBM. 

By these procedures, the single relaxation co- 

efficient ~ becomes ~---. a in the flow of high 

Reynolds number, and the proposed new model 

of FDLBM makes it possible to calculate with 

the fixed value of ~ which is taken in high 

Reynolds number flows. Also, it becomes possible 

that the calculation of 2xt can easily or stably 

simulate up to large value, while ~t/q~--=-2.0 is 

Co., Ltd. 
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an upper limit for the collision term in the con- 

ventional FDLBM model. 

4. Calculation Speed-up 

In this section, we discuss on the calculation 

speed-up which becomes possible by modifying 

the relationship between the viscosity coefficient 

and the single relaxation coefficient r by 

adding the term in Eq. (27). 

First, when the high Reynolds number is con- 

sidered, it is the major difference between the 

proposed FDLBM model and the conventional 

FDLBM model that as Re ~ c,-~, the relaxation 

time r in the conventional FDLBM, 

whereas r ---, a in the proposed model. From this 

fact, in order to satisfy the condition ~ t / r  

which is a condition of the coefficient depending 

on the collision term, the calculation stability 

could not be achieved if ~ t - - -*0  is not given 

in the conventional FDLBM. In the proposed 

FDLBM, howex, er, the lime becomes/k t ---' 2.0. a. 

Therefore, we can easily promote the calculation 

stability in /x t  to some extent in size. 

5 .  N u m e r i c a l  R e s u l t s  

To examine the characteristics of the shock 

wave and the reflection wave as well as the 

validity of the newly proposed FDLBM, we use 

both the conventional model and the proposed 

model. The shock propagation process represents 

an abrupt change in fluid properties. Shocks also 

occur in the flow of a compressible medium 

through ducts or nozzles and thus may have a 

decisive effect on such flows. An understanding of 

the shock process and its ramifications is essential 

to the study of compressible flows. 

First, we examine a shock tube flow. A con- 

ceptual scheme of shock tube is shown in Fig. 2. 

The pressure distribution is also illustrated. The 

shock tube is a device in which normal shock 

waves are generated by the rupture of a dia- 

phragm initially separating a high-pressure gas 

from the low-pressure gas. After the rupture of 

the diaphragm, the system eventually approaches 

to a thermodynamic equilibrium state, with the 

4d 

k_., Diaphragm 

t 

,m 

Fig.  2 
X-.c~3r dir~lte 

Simulated flow field in a shock tube 
(2D21V~ 

final state of the closed-end tube determined from 

the first law of thermodynamics. With no external 

heat transfer, the total internal energy of the gas at 

the final state is equal to the sum of the internal 

energy of the gases initially present on the both 

sides across the diaphragm. 

However, of primary interest is not the final 

equilibrium state ot" the gas, but the transient 

shock phenomena occurring immediately after 

the rupture of the diaphragm. Upon rupturing 

the diaphragm, a normal shock wave moves into 

the low-pressure side, with a series of expansion 

waves propagating into the high-pressure side. 

The speed of shock cs is defined as 

cs--=MDast (31) 

where ~ is the shock Mach number. The term 

a~ will be explained later in this section. The 

fundamental equation of shock tube can be writ- 

ten as 

P, P2 F (r~-l) ~a /a ' ~'o_/oi --2~,,l,,-~ 
. . . . . . . . . .  I ' '~" ~' ~' ~ '  i. : (32)  
P" P '  L v.'2,y]-r I ) ( p~ /p , - ] ~  2 

where asz, a ,  are the front sound ~.'elocity and 

the rear sound velocity of shock wave, respec- 

tively. 

As the initial parameters, if we set the initial 

pressure ratio of P4/ P~ --= 7. 0, the time ,_~/=0.01 

and the temperature in both partitions e~'-e4 = 

0.85, the shock Much number becomes M~= 

1.645. The calculated pressure distributions after 

the diaphragm rupture are shown in Fig. 3. It is 
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Flo~v field in a shock tube simulated with 
2D21V model by the conventional FDLBM 

noted that the pressure ratio over 7.0 is not com- 

pleted by using the conventional FDLBM. 

Next, with the proposed model, we put the 

initial pressure ratio of P~/P~=25.0, the time a 

t=0.1 as the initial conditions, and the shock 

Mach number is M~=2.215. The simulated flow 

fields are shown in Fig. 4. Here, it is noted that 

the calculation with the proposed model is stably 

completed even for the pressure ratios three times 

as high as those in the cases of the conventional 

model calculation. Also, in the cases shown in 

Fig. 3 and Fig. 4 the proposed model is able to 

speed up the calculation more than ten times 

faster than the conventional model. 

In Fig. 4(a), the shock waves are resolved by 5 
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m 
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e -  

X-coord ina te  X-coord ina te  
(a) Pressure (b) Internal energy 
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Fig. 4 Flow field in a shock tube simulated with 2D21V model by the proposed PDLBM 
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lattices, and there is not observed any osci l latory 

trend, which is often observed in the behind of  the 

wave front. F igure  5 shows the relation between 

the initial pressure ratio and the pressure ratio o f  

the fronl and the behind of  shock wave. In this 

case. we estimate the error  is within 0.02~o and 

3~ 

- , ~ " i : ' ~ ' , ' , ' ' l r ' 3 " , , " l ' r ' , , , i , , ~ - ; l  

j "  

i.//" 
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. I  

/ /  

..... ,__  ~ , ~ , ~  
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~e-  ' t . e  
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1 0  111 20  25  30  
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FII. 5 Results of the pressures at the front and rear Fig. 6 

of shock wave (by the proposed FDLBM) 
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posed FDLBM) 
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~ Z ~ ( , / J  i :' ~ ; ' i l # i i  
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i' i i i ~  i~))iJF~li ,, 

(c) 2200 time steps 

i i i,i" 
(b) 2000 time steps 

- U ,-  I k -  

~dj 2400 time steps 

Fig. 7 Unsteady shock wave psssing through the rectangular column. The shock Mach number M,:---2.215, 
initial pressure ratio Pv/P]=25.0 
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the results also agree well with the theoretical  

predictions. F igure  6 shows that the difference 

between the lheoret ical  shock speed and the 

calculated is within 1.24% 

In Fig. 7 the unsteady shock wave passing 

through a rectangular  co lumn placed in the lo~ ' -  

pressure gas chamber  is shown at selected t ime 

steps. The initial pressure ratio P(/P,=25.0, the 

time A t = 0 . 1  and the shock Mach number  l y e =  

2.215 are set as the initial condit ions.  Both the 

shock wave and the reflected wave are also well 

expressed. 

In Fig. 8, the unsteady shock wave passing 

through a circular  cyl inder  is shown. The radius 

of  the cylinder is equal  to the 25 lattice nodes. The 

initial condi t ions in this case are the initial 

pressure ratio Pv/P~=IS.0, the time / k l = O . l  and 

the shock Mach number  M~=2.043.  The numeri-  

cal results well express both the unsteady shock 

wave and the reflected wave at various t ime steps. 

(a) t000 time steps 

-" ," -" . ,""; : , '3 ~ ' ~ - - - ~  

.. ",~ .-'.;:,...-:.:~ 
,. 

(c) 1500 time steps 

(b; 1350 time steps 

i 
,- . . . . .  ~--..c.~ . . . . . .  

, .  ~ . . . .~ ._ - . :~ - - -~_  . .  , . ~ - . . .  

., ~ i  , . ~ ;;.,,,>., ~ - - - - _ - ~ . ,  

f .  % �9 " .  ~ x  " . , ~  " - -  

i i ~ . .  . . .~." ~,  , .  , .  

it .: 

~~i. '. " ~ ' : ;  " :":""' ? ~":~ ~' 

t 
',d) 1760 time steps 

Fig, 8 Unready  shock wave passing through the circular cylinder. The shock Mach number M~=2.043, initial 

pressure ratio PffPl -- 15.0 
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6. Conclusions 

By applying the lattice BGK compressible fluid 

model with the finite difference method, the cal- 

culation of  flow field such as strong shock wave 

where a large pressure ratio exists has been suc- 

cessful in the present study. A new model has 

been also proposed in FDLBM for the purpose of 

stabilizing the numerical scheme and speeding up 

the calculation. 

In applying the model to shock tube problem, 

we compared the theoretical and the numerical 

results. The numerical results with the newly 

proposed FDLBM show better agreement with 

the theoretical predictions than the conventional 

model. Also, both the shock wave and the 

reflected wave are well expressed with the 

proposed model in some example cases. 
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